

SRT Part II: PRE-REGISTRATION

SRT Complexity Correlation Test (SN Ia + Weak Lensing)

LiMiT

February 2026

Abstract

This document serves as a formal pre-registered falsification protocol for the State-Rewrite Theory (SRT). It defines fixed observables, models, and thresholds designed to isolate any SRT-specific signal from standard General Relativity (GR) + Λ CDM weak-lensing effects. The protocol establishes that the proposed SRT mechanism is empirically falsifiable and locks all statistical parameters prior to analysis.

1 Ground Truth: GR + Λ CDM Expectations

GR + Λ CDM weak-lensing magnification implies a measurable dependence between SN Ia Hubble residuals and line-of-sight convergence. The null hypothesis is not $r = 0$, but rather that observed dependencies are fully explained by standard magnification, selection, and survey systematics.

This baseline has been empirically detected in multiple datasets, notably in Pantheon (3.6 σ , see e.g., Shah et al. 2024) and DES-SN5YR (high significance). This protocol aims to separate:

- (A) The standard mean magnification channel.
- (B) Any additional complexity-driven variance channel specific to SRT.

2 Observables and Sign Conventions (Frozen)

Primary Observable: Standardized SN Ia distance-modulus residuals:

$$\mu_{res,i} = \mu_{obs,i} - \mu_{\Lambda CDM,i}$$

Computed after standard light-curve standardization and selection corrections. Positive μ_{res} indicates the SN appears dimmer than predicted.

Uncertainty Term: $\sigma_{\mu,i}$ (published per-supernova uncertainty) used to normalize variance tests.

Predictors: Derived from line-of-sight weak-lensing tomography $\kappa_i(z)$:

- **Mean-Shift ($\kappa_{eff,i}$):** Weighted sum/mean of convergence along the line-of-sight (LOS).
- **Complexity (K_i):** Multi-plane variance across tomographic bins, $K_i = Var_z[\kappa_i(z)]$.

$\kappa(z)$ Estimation Protocol: $\kappa_i(z)$ is computed from a fixed mass-map product using a 10 arcmin aperture and Gaussian smoothing ($\sigma = 5$ arcmin). *If the κ map product is already smoothed/binned by the release, we use the release-native smoothing/bins and do not re-smooth; the aperture/smoothing defaults apply only when κ is computed directly from a raw mass-map.*

3 The Dual-Channel Test (Fixed Models)

Validation requires passing two distinct endpoints:

3.1 Endpoint A: Mean-Shift (Baseline Lensing)

$$\mu_{res,i} = a + \gamma_1 \kappa_{eff,i} + b_1 z_i + b_2 HostMass_i + \text{SurveyIndicators} + \epsilon_i$$

GR Expectation: $\gamma_1 < 0$. Overdense LOS magnifies, making SNe appear brighter, reducing μ_{res} .

3.2 Endpoint B: Complexity/Scatter (SRT Channel)

Define the normalized variance proxy $y_i = (\mu_{res,i}/\sigma_{\mu,i})^2$:

$$y_i = a + \gamma_2 K_i + \delta \kappa_{eff,i} + b_1 z_i + b_2 HostMass_i + \text{SurveyIndicators} + \epsilon_i$$

SRT Requirement: $\gamma_2 > 0$. Higher LOS complexity predicts additional normalized residual variance beyond baseline magnification. $HostMass_i$ is included as a systematics check even if already corrected for in the primary pipeline.

4 Tiered Monotonicity

Samples are binned by K (Complexity) quantiles. The tier means of y must increase monotonically:

- **Tier 1:** Lowest 20% K (Baseline).
- **Tier 4:** Top 5% K (Extreme tail).
- **Threshold:** Tier 1 vs. Tier 4 separation must exceed 3σ via bootstrap.

5 No-Escape Clause

The SRT mechanism is rejected if:

1. γ_2 is consistent with zero or the 95% CI includes 0.
2. Tier monotonicity fails or the 3σ separation threshold is not met.
3. The γ_2 effect collapses when controlling for κ_{eff} .
4. The sign of γ_2 does not replicate across independent datasets.

Document Hash: SRT-PREREG-V2-K-TEST-2026-LiMiT

License: CC BY 4.0

©2026 [LiMiT](#)